Background
A person with asthma may experience decreased respiratory function, coughing, wheezing, and other measurable pulmonary function indicators, triggered by indoor and outdoor particulate matter (Ogilvie et al., 2004). Levels of PM_{2.5} vary throughout the year but tend to be high during the winter months when strong temperature inversions are most likely (NPI, 2010). Inversions occur when a layer of cool air becomes trapped at the earth’s surface beneath a layer of warm air, which acts as a lid to trap pollutants at the earth’s surface. A study by Wallace et al. correlated airway inflammation among asthmatics with inversions, measuring sperm cell counts (2015). Our study examines asthma ED visits in association with inversions and PM_{2.5} concentrations.

Objectives
To assess the risk of ED visits for asthma associated with winter inversions and corresponding increased levels of PM_{2.5} in Salt Lake County, Utah.

Methods
This study used ED records of visits for asthma, as identified by ICD-9 primary diagnosis codes beginning with “493.0-497.3” recorded for residents of Salt Lake County during December-February, 2006-2007 and 2007-2008. Daily 24-hour averages of PM_{2.5} were obtained from the Environmental Protection Agency (EPA, 2009), as well as daily measurements for CO, SO_2, NO_2, PM_{10}, and O_3 to account for possible confounding. Inversion days, as well as data on temperature and humidity, were identified and provided by the National Weather Service.

We used a time-stratified case-crossover design to identify index and reference days for each asthma visit (Layton et al., 2006; Lamy and Lay 2005). We used conditional logistic regression adjusted for temperature, NO_2, SO_2, and O_3 to derive odds ratios for ED visits for asthma due to inversions and PM_{2.5}.

Results
The odds of an ED visit for asthma during the 5th-7th day of a continuous inversion were 1.42 (1.02-1.96) times the odds of an ED visit for asthma on a day when there was no inversion (Table 1). After adjustments for temperature and air pollutants (NO_2, SO_2, O_3), an ED visit with a primary diagnosis of asthma showed a significant association with increases in ambient PM_{2.5}, including up to three days lag time.

Conclusions
We found no association between ambient PM_{2.5}, and ED visits for asthma. Salt Lake County residents are more likely to go to the ED for asthma during prolonged inversions lasting 3-7 days. Prolonged exposure to air pollutants during a lengthy inversion may have a cumulative effect on one’s asthma.

References
- PM_2.5 data provided by the Utah Department of Environmental Quality (Utah DEQ) 2016. World Data Center for Geoscience Data (WDC-GD) 2016, University of Colorado, Boulder, CO.

Acknowledgments
Data, analyses, and technical support were provided by the Utah Environmental Public Health Tracking Network, within the Utah Department of Health (UDOH), which is funded, in part, by the U.S. Centers for Disease Control and Prevention (CDC) grant 1-U38-ET000182. Analyses and project oversight were provided by the Utah Asthma Program, which is fully funded by the CDC (grant 1-U58-ET000049). The contents of this work are solely the responsibility of the authors and do not necessarily represent the official views of the UDOH or the CDC.